Uniqueness of Meromorphic Functions∗
نویسندگان
چکیده
In this paper, Hinkkanen’s problem (1984) is completely solved, i.e., it is shown that any meromorphic function f is determined by its zeros and poles and the zeros of f (j) for j = 1, 2, 3, 4. To appear in J. Canad. Math. / Canad. J. Math.
منابع مشابه
Uniqueness of meromorphic functions ans Q-differential polynomials sharing small functions
The paper concerns interesting problems related to the field of Complex Analysis, in particular, Nevanlinna theory of meromorphic functions. We have studied certain uniqueness problem on differential polynomials of meromorphic functions sharing a small function. Outside, in this paper, we also consider the uniqueness of $q-$ shift difference - differential polynomials of mero...
متن کاملOn uniqueness of meromorphic functions sharing five small functions on annuli
The purpose of this article is to investigate the uniqueness of meromorphic functions sharing five small functions on annuli.
متن کاملUniqueness of meromorphic functions dealing with multiple values in an angular domain
This paper uses the Tsuji’s characteristic to investigate the uniqueness of transcen- dental meromorphic function with shared values in an angular domain dealing with the multiple values which improve a result of J. Zheng.
متن کاملFive-value rich lines, Borel directions and uniqueness of meromorphic functions
For a meromorphic function $f$ in the complex plane, we shall introduce the definition of five-value rich line of $f$, and study the uniqueness of meromorphic functions of finite order in an angular domain by involving the five-value rich line and Borel directions. Finally, the relationship between a five-value rich line and a Borel direction is discussed, that is, every Borel direction of $f$ ...
متن کاملOn the uniqueness theory of algebroid functions in some proper domain
We consider the uniqueness problem of algebroid functions on an angular domain. Several theorems are established to extend the uniqueness theory of meromorphic functions to algebroid functions.
متن کاملSome results on value distribution of the difference operator
In this article, we consider the uniqueness of the difference monomials $f^{n}(z)f(z+c)$. Suppose that $f(z)$ and $g(z)$ are transcendental meromorphic functions with finite order and $E_k(1, f^{n}(z)f(z+c))=E_k(1, g^{n}(z)g(z+c))$. Then we prove that if one of the following holds (i) $n geq 14$ and $kgeq 3$, (ii) $n geq 16$ and $k=2$, (iii) $n geq 22$ and $k=1$, then $f(z)equiv t_1g(z)$ or $f(...
متن کامل